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What does this condition look like
and why am I studying it?

I am exploring a condition on the edges of multigraphs. The exact statement will be given after I
introduce the math, but here is what it looks like on a few graphs:

Examples

green edge = condition is true
red edge = condition is false

The condition has ties to research into inventing algebro-geometric Feynman rules (it is part of a
criterion guaranteeing a double edge formula for the Chern class of a graph hypersurface.)[1][2]
It is also intrinsically interesting.

The Greater Picture
Feynman rules in physics

Algebro-geometric Feynman rules
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What math is used
to express the condition?

The dual-Kirchoff Polynomial

The running example:
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DEFINITION: The dual-Kirchoff polynomial ΨG of a connected multigraph G is the sum over
the spanning trees Ti of the products of edges aj not in Ti.[3][4]

ΨG =
∑

Ti

∏

aj /∈Ti

aj

Each spanning tree gives a monomial of ΨG. In the example

ΨG = bd + bc + ad + ac + ab.

Edge Deletion and Contraction

NOTATION:
Ga ≡ G delete a

Ga ≡ G contract a

aG = Ga = Ga =b
c

d

b
c

d

b c

d

In the Example

G = Ga = Ga =a

The dual-Kirchoff polynomial satisfies a deletion-contraction relation:

ΨG = aΨGa + ΨGa

a = a +

Deleting an edge from a graph is the same as differentiating the dual-Kirchoff polynomial; con-
tracting an edge is the same as setting the edge variable to zero.

ΨGa = ∂aΨG

ΨGa
= (ΨG)a=0

The Ideal Generated by a Set of Polynomials

DEFINITION: In a polynomial ring R, the ideal I ⊆ R generated by a set of polynomials
S = {Qi} is denoted with angled brackets I ≡ 〈Qi〉, and

〈Qi〉 = {ΣiPiQi : Pi ∈ R;Qi ∈ S}.

An ideal has closure properties

J + K ∈ I for J,K ∈ I

PJ ∈ I for P ∈ R, J ∈ I.

Statement of the Condition

The condition (G, e) is true when ΨG is in the ideal of partial derivatives of ΨGe:

ΨG ∈ 〈∂aiΨGe〉

This means there exist polynomials Pi such that

ΨG = ΣiPi∂aiΨGe

Some Properties we Know About

The condition (G, e) is true when e has a parallel edge in G.[1] Parallel edges have interesting
properties and play an important role. The condition also has nice invariance properties for graphs
with one vertex cut sets and two edge cut sets.
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Current Lines of Investigation

Computer Search

I am doing a computer search of small graphs. This is the method used in practice to check the
condition:

(1) Calculate the dual-Kirchoff polynomial as

Ψ = det
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where E is the oriented incidence matrix with one row removed (this is a consequence of the
matrix tree theorem).[3]

(2) Test for the membership ΨGe
∈ 〈∂aiΨGe〉 by reducing ΨGe

in the Grobner basis of 〈∂aiΨGe〉
with total degree ordering. The condition is true if ΨGe

reduces to zero.

Proving More Results

⇔
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The Wheel GraphsPossibly another parallel edge fact
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