Exploring a Condition on Multigraphs

Gregory Maxedon
Summer USRA under Karen Yeats
Department of Mathematics, SFU

What does this condition look like and why am I studying it?

I am exploring a condition on the edges of multigraphs. The exact statement will be given after introduce the math, but here is what it looks like on a few graphs:

The condition has ties to research into inventing algebro-geometric Feynman rules (it is part of criterion guaranteeing a double edge formula for the Chern class of a graph hypersurface.)[1][2] It is also intrinsically interesting.

What math is used to express the condition?

The dual-Kirchoff Polynomial
The running example:

$$
G=\underbrace{c}_{d}
$$

The spanning trees of G :

$$
\left.\stackrel{a^{b} c}{c} \sqrt{a^{b} c} \sqrt{a}\right)^{b} c a \sqrt{b^{b} c} \sqrt{a_{d} c}
$$

Definition: The dual-Kirchoff polynomial Ψ_{G} of a connected multigraph G is the sum ove the spanning trees T_{i} of the products of edges a_{j} not in T_{i}.[3][4]

$$
\Psi_{G}=\sum_{T_{i}} \prod_{a_{a} \notin T_{i}} a_{j}
$$

Each spanning tree gives a monomial of Ψ_{G}. In the example
$\Psi_{G}=b d+b c+a d+a c+a b$

Edge Deletion and Contraction
Notation:

$$
G=\underbrace{\text { In the Example }}_{a} G^{a}=\underbrace{c}_{d} G_{a}^{c}
$$

The dual-Kirchoff polynomial satisfies a deletion-contraction relation:

Deleting an edge from a graph is the same as differentiating the dual-Kirchoff polynomial; conracting an edge is the same as setting the edge variable to zero.

$$
\begin{aligned}
\Psi_{G^{a}} & =\partial_{a} \Psi_{G} \\
\Psi_{G_{a}} & \left(\Psi_{G}\right)_{a}
\end{aligned}
$$

The Ideal Generated by a Set of Polynomial
Definition: In a polynomial ring R, the ideal $I \subseteq R$ generated by a set of polynomials $S=\left\{Q_{i}\right\}$ is denoted with angled brackets $I \equiv\left\langle Q_{i}\right\rangle$, and

$$
\left\langle Q_{i}\right\rangle=\left\{\Sigma_{i} P_{i} Q_{i}: P_{i} \in R ; Q_{i} \in S\right\}
$$

An_{n} ideal has closure propertie

$$
\begin{array}{rll}
J+K \in I & \text { for } & J, K \in I \\
P J \in I & \text { for } & P \in R, J \in I .
\end{array}
$$

Statement of the Condition

The condition (G, e) is true when Ψ_{G} is in the ideal of partial derivatives of $\Psi_{G^{e}}$

$$
\Psi_{G} \in\left\langle\partial_{a_{i}} \Psi_{G^{e}}\right\rangle
$$

This means there exist polynomials P_{i} such that
$\Psi_{G}=\sum_{i} P_{i} \partial_{a_{i}} \Psi_{G^{e}}$

Some Properties we Know Abou

he condition (G, e) is true when e has a parallel edge in G.II] Paralle edges have interesting properties and play an important role. The condition also has nice invariance properties for graphs ith one vertex cut sets and two edge cut sets

Current Lines of Investigation

Computer Search

am doing a computer search of small graphs. This is the method used in practice to check the ondition:
(I) Calculate the dual-Kirchoff polynomial a

$$
\Psi=\operatorname{det}\left(\left[\begin{array}{cc|c}
a_{1} & & \\
& \cdots & E^{T} \\
& & a_{m} \\
\hline & -E & 0
\end{array}\right]\right)
$$

where E is the oriented incidence matrix with one row removed (this is a consequence of the matrix tree theorem).[3]
(2) Test for the membership $\Psi_{G_{e}} \in\left\langle\partial_{a_{i}} \Psi_{G^{e}}\right\rangle$ by reducing $\Psi_{G_{e}}$ in the Grobner basis of $\left\langle\partial_{a_{i}} \Psi_{G^{e}}\right\rangle$ with total degree ordering. The condition is true if $\Psi_{G_{e}}$ reduces to zero.

Proving More Results

ossibly another parallel edge fact

The Wheel Graphs

[^0]
[^0]: References
 1] Paolo Aluffi. Chern Classes of Graph Hypersurfaces and Deletion Contraction Relations. Mosc. Math I^{\prime} 12:4 (2012), 671-700. arXiv:1106. 1447
 [2] Matilde Marcoli. Feynman Motives. World Scientific. ISBN:978-981-4304-48-1, 2006
 Kiren Yeats. Some Combinatorial Interpretations in Perturbative Quantum Field Theory. arXiv:1302.0080
 (4] Stefan Weinzierl. Feynman Graphs. arXiv:1301.6918

